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ABSTRACT
Sound research practices are the foundation of valid, reliable, and
trustworthy research results. The discipline of meta-research crit-
ically evaluates research practices and proposes new methods to
improve and refine the way in which research is conducted. In
this paper, we apply the framework by Ioannidis et al. [59] for
categorizing meta-research work that analyzes cyber security re-
search practices, with the goal of gaining a better understanding
on the research community’s efforts to examine its own research
practices. We use this framework to characterize which areas of
meta-research are most commonly studied, and which areas receive
the most attention in terms of developing and enforcing improved
research practices. We also compare these meta-research findings
with experiences from another academic community, in this case
the Internet measurement community, to observe areas where aca-
demic communities can learn from each other. Our work is meant
as an encouragement for the research community to continue its
self-reflective practices, and we hope that it can contribute to these
ongoing efforts to improve cyber security research.
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1 INTRODUCTION
Cyber security is becoming an ever more important concern in
society, with the number of cyber attacks being steadily on the
rise, and these attacks having more and more impact on essential
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infrastructure such as power grids [66]. Coupled with this trend,
the security research field is rapidly expanding in size and cover-
age of topics. This field seeks to examine the interactions between
adversaries and the systems that they target, with attacks ranging
from exploiting vulnerabilities in these systems to engaging in ‘tra-
ditional’ crimes in an online world. The goal of such research is
to study these security issues, understand the modi operandi of
the attackers and defenders, and design solutions that mitigate at-
tacks and help to better protect users against current and emerging
threats. With attackers deploying more sophisticated operations to
attack their targets while seeking to remain hidden from defenders,
the techniques necessary to study security also need to be more
elaborate and well-designed in order to keep up with this increase
in complexity.

This leads to a desire for cyber security research to be as valid
and sound as possible, i.e., whether the research uses methods,
data sources, etc., that are appropriate, and is well evaluated and
communicated, therefore generating reliable data and ultimately
making the claims derived from its results well-justified. This is
not only to ensure that the research’s analyses and findings reflect
the actual security issues occurring in the real world, but also to
ensure that the mitigations that are proposed are actually effective
at preventing people from being harmed.

A critical reflection on the practices that are used to conduct (se-
curity) research can help in achieving the goals of valid and sound
research. Such a reflection can be framed within the discipline of
meta-research (or metascience). This discipline addresses the critical
evaluation of the various methods and practices in scientific re-
search in general [59], i.e., ‘does research on research’. Its goal is to
understand whether current research is sufficiently sound and reli-
able, and develop new best practices to improve and refine the way
in which research is conducted. This supports enabling research
findings and claims to be credible and trustworthy, allowing to build
upon them for making informed decisions, or, e.g., within the scope
of security, to use them for developing better countermeasures
against attacks. One of the main underlying topics is understanding
the range of biases that may emerge when doing research, as they
negatively impact principles such as correctness or soundness, and
searching mitigation strategies for these biases [25, 48, 59].

Ioannidis et al. [59] introduced a categorization of meta-research
for the different phases of the research cycle. This categorization
captures five areas of meta-research:

• the methods used when designing and conducting studies.
This includes the development of sound data collection or
the use of appropriate data sets. The analysis of methods
seeks to account for a variety of biases from flawed methods
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and instruments, selection (e.g., sampling) biases, to inap-
propriate statistical analyses.

• reporting or communicating research, also avoiding biases
due to misinterpretation of results, with a risk of the wrong
conclusions being drawn if the research results are not accu-
rately and completely conveyed.

• reproducibility of research, allowing others to verify research,
and avoiding biases from one-off observations and instead
allowing to understand if the research captures a genuine
trend.

• evaluation of research, primarily corresponding to the peer
review process, which might suffer from biases such as fa-
voring positive results or randomness in paper acceptance.

• incentives for research, or an understanding of what research
is favored, including perceptions related tometrics for papers
(e.g., citations) or funding criteria.

In this paper, we apply this categorization by Ioannidis et al. to
cyber security-related meta-research work, to gain a better un-
derstanding of the cyber security research community’s efforts to
examine its own research practices. We use the framework to char-
acterize which areas of meta-research are most commonly studied,
and which areas receive the most attention in terms of developing
and enforcing improved research practices. We also compare these
meta-research findings with experiences from another academic
community, in this case the Internet measurement community,
to understand how these practices may differ between research
communities and observe areas where the communities can learn
from each other. With our overview, we seek to understand cur-
rent practices, priorities, or open questions related to the way in
which cyber security research is conducted – in a way, we will
engage in ‘meta-research on meta-research’. Our work is meant
as an encouragement for the research community to continue its
self-reflective practices, and we hope that it can contribute to these
ongoing efforts to improve cyber security research.

2 BACKGROUND AND RELATEDWORK
The concept of “Science of Security” covers efforts to define, analyze,
and promote scientific practices in security research. Herley and van
Oorschot [54] and Spring et al. [105] give a historical perspective on
the development of this concept, mainly through US government
initiatives. The proponents of this concept see the application of
the scientific method as a way to move the security field forward,
make it more rigorous, and therefore help in achieving more secure
systems [105]. Next to a lack of concrete definition of ‘Science of
Security’, critics see two major flaws, current and inherent. Herley
and van Oorschot [54] find that current security research is not
conducted scientifically, failing to adopt practices that the ‘rest of
science’ has accepted and learned over the course of history, and
suffering from crises pertaining to the disconnect between academic
research and the real world. More fundamentally, critics find there
to be inherent obstacles in applying science to security, that make
the scientific method inapplicable to security. Spring et al. [105]
summarized these perceived obstacles as impossible experiments
(as they are unethical or too risky), impossible reproducibility, a
lack of laws of nature to discover, a lack of a shared ontology, and
security being not a science but ‘just engineering’. Spring et al. [105]

refute these obstacles, finding that they rely on outdated views on
science. They even state that, based on a more modern view on
science, the research community currently already engages in a
good scientific practice – opposing the view of Herley and van
Oorschot. Overall, security research is seen as a nascent field [54],
going through the ‘growing pains’ of any scientific field. Spring
et al. [105] see security as facing unique challenges that define it as
a science, but Herley and van Oorschot [54] warn not to use these
challenges as an excuse not to approach security scientifically.

Herley and van Oorschot [54] use their observations of flaws
in current security research practices to summarize eleven sugges-
tions for ways forward to make security research more scientific.
Al-Zyoud et al. [7] compile guidelines for essential information
that should be mentioned in security papers, covering that paper’s
evaluation subject (what is being evaluated), subject source (who
generated the evaluated artifact), and approach (how is it evalu-
ated). They find through a survey of two top security conferences
that papers often fail to include this information. Carroll et al. [25]
compare security to other scientific fields and survey these fields
for desirable characteristics of (deductive) experimental methods
to be applied to security: falsifiable hypotheses, reproducible re-
sults, controlling of variables, and understanding of biases. Peisert
et al. [83] give an example of how to design security experiments
that abide by those desirable characteristics. Kott [65] develops a
semiformal model of ‘the science of cyber security’, and applies it to
example case studies to finally classify the major problem groups.

In a broader reflection on security and privacy research, Baset
and Denning [16] track the evolution of topics covered in 36 years
of research, describing emerging and dying topics as well as the
author communities that publish on these topics, through topic
modeling on a paper text corpus. Katsikeas et al. [61] similarly
identify communities within security and privacy research and
describe the main topics they study, through community detection
on the citation graph. The Cyber Security Body of Knowledge
(CyBOK) [89] systematizes foundational cyber security knowledge
into 21 knowledge areas, an endeavor that is already established in
“mature scientific disciplines”. These works focused on examining
cyber security research on the type of research being done; in the
remainder of this paper, we focus on works that examine the way
in which research is done.

3 PAPER SELECTION
3.1 Method
To compile our overview of meta-research work related to cyber
security, we start from the categories defined in Ioannidis et al.’s
framework. We use the descriptions of these categories in their
work as well as on their online repository1 to compile an initial
set of general topics and keywords for each category, e.g., “peer
review” for the evaluation category.We extend this set with relevant
topics and related keywords from our own domain knowledge, e.g.,
“large-scale web measurements” for the methods category.

We then search papers that match the keywords related to each
topic across Google Scholar and the ACM Digital Library, adding
“web/cyber”, “security/privacy” or “Internetmeasurement” to search

1https://metrics.stanford.edu/research

https://metrics.stanford.edu/research
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Table 1:We structure the selected cyber security-relatedmeta-
research works according to the framework by Ioannidis
et al. [59]. For each category, we list the topics that relate to
it and for which we search relevant papers. These topics are
annotated with a characterization of their prevalence and
general interest, as apparent from the studied cyber security-
related meta-research work.

Meta-research category Topic Prevalence

Methods (performing) Best practices and pitfalls High
Data collection High
Data sets High
Qualitative methods High
Ethical considerations High

Reporting (communicating) Science communication Low
Publication bias Medium
Preregistration Low

Reproducibility (verifying) Artifacts High
Evaluation (evaluating) Peer review Medium
Incentives (rewarding) Rankings Medium

Citations Medium
Good scientific practices Low

queries where appropriate, and using the default search settings
for both repositories. We stop our search when we seemingly reach
saturation in relevant works within the search results (i.e., until we
only retrieve works that are irrelevant and are only listed because
they have incidental collisions with the search query). We then
skim each paper’s title and abstract, and retain those papers whose
main subject relates to the searched topic for an in-depth reading.
We also iteratively process the references of discovered papers to
find additional relevant papers, to then ultimately compile the final
set of papers that we discuss in our overview. We do not set an
explicit time range for our search query; we observe that some
works already date back 20 years or more. For areas where the
relevant literature is broad and extensive, we exemplify the work
in the area with papers related to the field of web security and
privacy, with which we are the most familiar, but seek to extend it
to the broader computer security field in general. We also leverage
our familiarity with web-related research by selecting the Internet
measurement community to compare research practices, as this
community addresses similar topics and issues. We conduct our
search for relevant meta-research work in this community in the
same way as for the cyber security community.

The remainder of this paper is structured as one section per
category in Ioannidis et al.’s framework – methods, reporting, re-
producibility, evaluation, and incentives –, ending with a section
concluding our overview and examining the trends observed and
the lessons we can learn going forward. Table 1 summarizes the
topics that we cover for each category, alongside a characteriza-
tion of their (relative) prevalence within the cyber security-related
meta-research work that we selected.

3.2 Limitations
Our overview focuses on identifying meta-research works that
relate to one of the five categories in the framework used, and

we design our search process to discover relevant works in those
five areas. We therefore do not consider meta-research works that
more broadly analyze research trends in the cyber security field [16,
92]. In general, and in line with other work in this space of meta-
research overviews [53, 59], our goal is not to be fully systematic
or provide a quantitative evaluation of cyber security-related meta-
research work, but rather be descriptive and highlight and illustrate
trends within this research body. It is therefore also not meant to be
prescriptive in which research practices are the most appropriate
or should be applied.

Our choice of Google Scholar and the ACM Digital Library as pa-
per repositories may cause us to miss certain relevant publications
that are only listed in other repositories. Nevertheless, we believe
these to be the most appropriate databases for our analysis, no-
tably as they both provide full-text search of paper contents. While
Google Scholar lacks a transparent policy for indexing, its cover-
age has steadily increased over time [51]. In contrast, controlled
databases such as Web of Science or Scopus do not exhaustively
cover works in, a.o., the discipline of computer science [51]. This
further motivates our choice of paper repositories, as well as their
usage in prior computer science meta-research work [44, 45].

4 METHODS
Crucial to the validity of research is conducting it using the best
scientific methods and practices possible. Otherwise, there is a risk
that the experiments and their results are not truly representative
or accurate. Of the meta-research categories, methods tend to be
the most specific to a given research field.

Best practices and pitfalls. Across the board, many domains of (cy-
ber) security research have seen studies on best practices and pitfalls.
Given the breadth of our field, we give a non-exhaustive selection of
example studies that address these issues. Rossow et al. [95] studied
issues in malware research, ranging from incorrect datasets, a lack
of transparency on methods or results, unrealistic settings, to a lack
of safety procedures for containing the malware. Botacin et al. [23]
identified twenty pitfalls in malware research through a literature
review, adding issues such as closed data sets. Arp et al. [9] iden-
tified ten common pitfalls in the application of machine learning
in security research, at all stages of the machine learning work-
flow. Eberz et al. [37] found that evaluations of behavioral biometric
authentication systems failed to report error distributions, which
may have led to incorrect evaluations. Sugrim et al. [106] proposed
robust metrics for the evaluation of authentication systems that use
machine learning, as they found that existing commonly used met-
rics were incomplete or hard to compare. Das et al. [33] analyzed
how studies use hardware performance counters and whether they
acknowledged and/or addressed limitations in using them for secu-
rity applications. Van der Kouwe et al. [111] analyzed how pitfalls
may affect the validity of performance benchmarking in systems se-
curity papers, if they cause flaws such as an incomplete evaluation,
irrelevant or unsound results, or a lack of reproducibility. Polakis
et al. [87] described the various methods used in all phases of a
measurement study on social networks, from ethical considerations
to data collection and processing techniques.
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Data collection. Data collection is a crucial phase of a research
project, as all subsequent analyses and results depend on the ac-
curacy and validity of the acquired data. A common denominator
to many studies related to web security, web privacy, and Internet
measurement in general is the use of large-scale web measurements
for this data collection. Pour et al. [88] survey the use of various
Internet measurement techniques in recent cyber security work,
creating a taxonomy based on the type of security issue that was
studied. Unsurprisingly, recent work has critically analyzed meth-
ods that are regularly used as part of large-scale web measurements,
often formulating recommendations for how researchers should
use them or proposing improved solutions. Already in 2004, Pax-
son [82] outlined strategies for sound Internet measurement, such
as calibrating measurements, inspecting raw data, and designing for
reproducibility. Collecting web data often involves ‘crawlers’ that
scrape and store a web page’s contents. Ahmad et al. [5] compared
web crawlers with varying technologies and feature sets, finding
that the choice of crawler may significantly impact measurements.
Zeber et al. [118] compared crawlers with each other and with
human-generated traffic, finding that crawling results can vary sig-
nificantly over time as well as across platforms. Krumnow et al. [68]
analyzed how the popular OpenWPM crawling framework is de-
tectable and how its measurements can therefore be prevented or
poisoned, which introduces errors into the obtained results. Szurdi
et al. [107] found that cybercrime must be measured using multiple
vantage points and profiles, with special attention to cloaking, in
order to obtain reliable results. Jueckstock et al. [60] measured how
the browser configuration and network vantage point cause sig-
nificant biases for web privacy and security measurements. Demir
et al. [35] measured how different experimental setups such as the
browser, location, user interaction, and time may significantly in-
fluence web measurements. Roth et al. [96] measured how websites
have inconsistent security policies between browsing profiles. This
also has implications for measurements, as these may misreport
findings if website behavior changes between profiles or page ac-
cesses. Wan et al. [115] found that Internet scan results depend on
their origin, i.e., the location, network type, or protocol. Cassel
et al. [26] found that frameworks for emulating mobile browsers on
desktop may produce results that differ from real mobile browsing,
causing incorrect findings about the mobile web specifically.

Data sets. Data sets form another subject of scrutiny, as there
are often questions about reliability and validity, especially if these
data sets are difficult to acquire or generated opaquely (e.g., by
a commercial third party) [84]. For example, VirusTotal is a com-
monly used, but commercial source for labeling entities such as
files and URLs as benign or malicious. Peng et al. [85] studied how
reliable VirusTotal is for detecting phishing websites, finding vary-
ing and inadequate detection performance as well as inconsistent
labeling. Zhu et al. [122] studied how researchers use VirusTotal to
label malware, and analyzed how reliable the data set is in terms
of accuracy, independence, and stability over time. More broadly,
Feal et al. [40] found that blocklists are opaquely constructed, may
be slow to update, may either label records differently or share
labels and therefore have high overlap, and are not always well
documented. Scheitle et al. [99] and Le Pochat et al. [70] found that

commonly used rankings of top domains exhibit undesirable proper-
ties for research, such as opaque methods, volatility, disagreement,
and vulnerability to manipulation. Vallina et al. [109] found similar
shortcomings in terms of opaque methods and disagreement for
third-party domain categorization services. Researcher-generated
data sets may also suffer from a lack of coverage. For example,
Cuevas et al. [32] found that scraping-based measurements ‘by
proxy’ on online anonymous marketplaces systematically underes-
timate metrics such as revenue or the number of discovered listings.

Another example is the tension between using real-world versus
simulated data sets. Real-world data has the perception of being
more accurate and representative, but comes with substantial chal-
lenges for data collection and publication, not in the least due to
the need to obtain permission to collect data and publish a (usable)
anonymized version if the data pertains to human behavior [1].
Simulated data overcomes these issues and better allows for re-
peatable and comparable security experiments, but the community
often questions its validity, as it is difficult to assess the quality
and representativeness of generated data [1]. Indeed, problems
with simulated data sets are known to exist and significantly affect
research results. For example, the data collection strategy affects
the perceived performance of website fingerprinting attacks [94],
and standard data sets for evaluating intrusion detection systems
contain significant noise or even errors that impact attack perfor-
mance [38, 72].

Qualitative methods. A particular body of research focuses on
correctly applying qualitative methods, usually for studying usable
security and privacy. This body of research usually entails collecting
data from humans through specific methods (e.g., interviews) and
analyzing that data qualitatively as opposed to quantitatively [67].
Fujs et al. [47] surveyed the use of such qualitative methods in se-
curity research, finding that interviews are most common. Since
the rest of the security community may be unfamiliar with these
methods, as their research tends to be quantitative, special care is
taken to show the validity of research results that originate from
these qualitative methods. Schechter [98] summarized pitfalls and
good practices for describing security and privacy experiments
that involve human subjects, including the experiment design and
setup but also the reporting on statistical tests. Redmiles et al. [90]
compiled guidelines for conducting surveys in security and privacy
studies, including how to design the questions, achieve a represen-
tative sample of participants, and test the questions upfront. Ortloff
et al. [80] examined the process of coding (or labeling) data qualita-
tively for usable security and privacy studies, recommending that
the number of coders should be adapted to the data type. Unfor-
tunately, these best practices do not appear to always be followed.
Groß [48] analyzed the reliability of statistical analyses in security
user studies, finding systemic issues such as low statistical power
that put the validity of the results into questions. They use their
findings to provide recommendations for supporting and requiring
more reliable studies. Kaur et al. [62] surveyed human factors se-
curity research over ten years, finding, a.o., biases in population
sampling, and a lack of theorization that should be the result from
inductive methods such as grounded theory.

Ethical considerations. Ethical considerations for conducting re-
search are meant to ensure that no harm is done while studying a
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security or privacy system. Existing frameworks for ethical review
may not be adapted to the needs of the cyber security field. Van
der Ham and van Rijswijk-Deij [110] describe the shortcomings of
processes involving ethical review boards such as an Institutional
Review Board for Internet measurements as these often fall out
of those boards’ scope, and design an alternative framework with
guidelines for ethical measurements. Macnish and van der Ham [74]
continue this line for security research ethics, using two case studies
of controversial studies to motivate how current methods and guid-
ance are inadequate, as review boards provide insufficient guidance
and ethical oversight for practitioners is lacking. It is then often
up to the community itself to set their own ethical standards and
provide guidelines to researchers. The Menlo Report [10], which
outlines the principles of respect for persons, beneficence, justice,
and respect for law and public interest, is commonly seen as the
main framework for ethical computer science research. Reidsma
et al. [91] propose a practical framework for addressing the specifici-
ties of cybersecurity research when passing through ethical review
boards or designing relevant university policies. Allman and Pax-
son [8] provide guidelines for ethically sharing data from network
measurements, preventing risks such as privacy leaks and setting
acceptable use policies including appropriate acknowledgments.
Conducting research ethically is increasingly enforced at top-tier
security conferences, with measures ranging from mandatory de-
scriptions of the ethical considerations made, to research ethics
committees reviewing potentially contentious cases [56]. Zhang
et al. [119] surveyed ethical considerations in computer security
research, including what ethical requirements conferences impose,
how papers discuss ethics, and whether researchers apply ethi-
cal practices. They also give recommendations on how to learn
about ethical requirements, apply them in practice, and describe
them appropriately. Feitelson [41] uses the 2021 controversy on
the “Hypocrite Commits” paper, which analyzed developer reaction
to intentionally introduced bugs, as a starting point for surveying
developers and researchers on what they consider ethically accept-
able research practices, formulating recommendations based on
the insight that developers are willing to contribute to research
if it is conducted transparently and in good faith. Pauley and Mc-
Daniel [81] describe the ethical considerations seen recently in
practice in Internet measurement research, finding that this com-
munity still lacks a cohesive approach.

5 REPORTING
Communicating researchwell is essential for ensuring that it reaches
the intended audience(s) without being misinterpreted or misrepre-
sented.

Science communication. A research study and its results can be
of interest to multiple stakeholders. Fellow researchers can build
upon prior work, relate the findings of prior work to their work,
or learn about methods and data sets used. Policymakers can use
research results as a foundation for new regulations that seek to
improve security and privacy, e.g., by prohibiting privacy-invasive
practices that research has found in the wild. Industry companies
can integrate state-of-the-art research solutions into their tools or
processes to improve their security posture. Finally, researchers can
communicate the real-world impact of their findings to the public

at large, e.g., directly or through the media, and give actionable
guidance such that the public can improve their own security and
privacy practices. However, it appears there is little research into
how these different forms of science communication are used in
security research. As one example, Narayanan and Lee [78] reflected
on the success of their engagement with policymakers, carriers,
journalists, and users for their security policy audit of SIM swapping
attacks. Pennekamp et al. [86] proposed a framework for conducting
cybersecurity research for industrial applications, and collaboration
with companies to enable such interdisciplinary research.

Publication bias. Next to studying research that is communicated,
there is a concern for research that is not being made public, either
because its results are negative, deemed insignificant, or deemed un-
desirable, or because it is kept proprietary. Publication bias broadly
refers to any bias that may cause specific research to be overrep-
resented or underrepresented in what is actually published, based
on the outcomes of that research [36, 48]. The most commonly re-
garded form is the omission of negative results, where a hypothesis
could not be confirmed nor falsified, or an expected phenomenon
was not observed, because researchers are less inclined to submit
them for publication, and reviewers and other research gatekeepers
(e.g., editors, funders) are less inclined to appreciate them. This
causes positive results to be overrepresented, extending to an in-
centive to always find (statistically significant) results. This may
trigger questionable practices such as performing many analyses on
data until significant results are found (“p hacking”). Not publishing
negative results may also mean that other researchers waste time
and resources retrying those experiments, only to find (and discard)
the negative results. This bias also forms a threat for meta-analyses
through literature surveys, as these may erroneously conclude only
positive findings, as the negative results that run counter to those
findings have simply not been published.

Groß [48] showed empirically that the cyber security user study
field suffers from a publication bias, with smaller studies without
significant results going unpublished. Such user studies might be
among the type of study that is most vulnerable to publication
bias, as they heavily rely on statistical inferences across relatively
small populations, where there is a higher risk of selectively exe-
cuting analyses and reporting results that support a hypothesis as
well as reporting results with small effect sizes and low statistical
power. In security, publication bias may also be due to potential
underreporting of vulnerabilities, where papers are not submitted
or published in the first place, for example if the vulnerable entity
requests that the publication is delayed or stopped altogether, lead-
ing to unreliable aggregate vulnerability statistics [27]. Afterwards,
there is also a belief that within the research community, papers
presenting attacks are more readily accepted than papers proposing
defenses [104], potentially giving an appearance that attacks are
more prevalent (if they are allowed to be published, as mentioned
above). Boucher and Anderson [24] discuss one example of the dif-
ficulties that may emerge in academically publishing a discovered
vulnerability, as their public disclosure was used as grounds for
paper rejection.

Preregistration. One proposed solution to alleviate some pub-
lication bias is preregistration, where the intended aim, research
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questions, hypotheses, methods, data sets, analyses, etc. are estab-
lished in a document before the actual experiments take place [79].
However, it seems that this practice is very uncommon in secu-
rity and privacy research, possibly also due to the exploratory or
vulnerability-oriented nature of many studies, which does not al-
ways allow for a detailed experimental design upfront.

6 REPRODUCIBILITY
Verifying research can be achieved by seeking to reproduce it. Suc-
cessfully repeating a study serves as a confirmation of its results,
and increases the likelihood that the studied hypothesis is cor-
rect [77]. Conversely, failing to repeat a study puts the validity of
its results into question, in particular when this failure is due to
flawed methods. The challenges in reproducing past work has given
rise to a perceived ‘replication crisis’ [58], although this notion is
also being challenged [39].

Artifacts. The ability to reproduce studies hinges on the avail-
ability and quality of (descriptions of) the artifacts used, comprising
data sets, methods and tools. One set of high-level guiding prin-
ciples are the FAIR principles [117]: artifacts should be findable,
accessible, interoperable, and reusable. Within the field of cyber se-
curity, efforts to support scientific reproducibility focus on sharing
data sets and tools to allow for repeating studies and building upon
prior work. Benzel [17] describes how associations such as ACM [2]
and USENIX [108] have an artifact evaluation process where pa-
pers can receive badges based on the extent to which artifacts are
available, functional, and able to be used for reproducing results.
However, these badges may give a false sense of research validity, as
the fact that, e.g., methods are reproducible does not mean that they
are appropriate or complete [86]. Balenson et al. [14] introduced
SEARCCH, an online catalog supporting better discovery of secu-
rity research artifacts. Hamm et al. [52] found that security papers
with user studies generally publish their questionnaires or inter-
view guides, but not the actual participant data that was used in
the analysis. More broadly in systems research, Frachtenberg [44]
found that the availability of artifacts quickly decays over time.
In Web measurement research, Demir et al. [35] evaluated recent
work on 18 criteria that enable replicability and reproducibility,
finding that they often fail to meet these criteria and omit crucial
information that would allow reproduction.

The Internet measurement community has recently made re-
producibility a topic of community debate and academic work.
Reproducibility was the focus of a workshop at the 2017 SIGCOMM
conference. Based on this workshop, Bajpai et al. [13], Saucez and
Iannone [97] and Scheitle et al. [100] identified challenges for re-
producibility, including ambiguous definitions, unavailability of
authors or artifacts, and a lack of incentives. They formulate rec-
ommendations to improve reproducibility such as artifact review
and badges. Notably, the IMC conference has not implemented
such a review and badging process, unlike the security community.
Bonaventure [22] and Flittner et al. [43] surveyed authors at com-
puter networking conferences on the composition and availability
of paper artifacts. Among their findings, they discuss obstacles such
as insufficient descriptions of software and data sets, incomplete
tools or broken links, and the influence of research cultures on the
type of tools and data sets used, which impacts artifact availability.

In 2018, reproducibility was the subject of a Dagstuhl Seminar [11],
which resulted in a set of recommendations and best practices for
documenting the research process to allow for reproduction [12].
Zilberman and Moore [123] describe experiences with and rec-
ommendations for the artifact evaluation process at networking
conferences. IMC 2019 featured a ‘reproducibility track’ [3], inviting
short papers replicating prior work, but these were only presented
as posters, i.e., not featured at the main conference track.

7 EVALUATION
Peer review. The primary way of evaluating research is through

the peer review process, where fellow scientists judge the quality
of a research paper, such as the soundness of its methods or the
originality of its findings, and decide whether it is acceptable for for-
mal publication. This process is meant to maintain the integrity of
science [102]. However, as peer review remains a human endeavor,
concerns prevail about subjectivity in the review process leading
to subpar papers with fundamental flaws being published while
papers that advance the state of the art are rejected. Ultimately,
this could lead to spreading false scientific beliefs and hindering
scientific progress, respectively.

In 2022, Soneji et al. [104] studied the peer review process in com-
puter security through interviews with PC2 members for top-tier
conferences. Among their key findings, they found that reviewers
did not share common evaluation metrics. Only novelty was a met-
ric considered by most reviewers, although they acknowledged that
this was a subjective metric. In contrast, ‘red flags’ that give reason
to reject a paper are more diverse and concrete. This suggests that
reviewers may have a mindset of looking for reasons to reject rather
than accept papers. While reviewers felt the responsibility to pro-
vide high-quality reviews, high workloads, a lack of accountability,
and a PC that has insufficient expertise or experience to review
a paper run counter to this goal. These yield a risk of subjective
reviews and contributes to a sense of ‘randomness’ as to whether a
paper is deemed scientifically worthy. One ‘countermovement’ to
the focus on novelty is the increased appreciation for Systemiza-
tion of Knowledge papers, which evaluate and systematize existing
knowledge on a specific research topic [18]. Specifically for us-
able security and privacy, Ortloff et al. [80] surveyed reviewers on
their criteria for qualitative studies. Overall, the reviewers expected
detailed methods descriptions and the use of somemethod for reach-
ing agreement among coders. There was more disagreement on
acceptable task division and agreement levels across coders.

The top-tier security conferences have recently moved to a more
journal-style model, with multiple submission deadlines and the
possibility of revisions. As one possible word of encouragement,
Vardi [112] posits that the time and workload pressure brought
about by the preference in computer science for conferences over
journals reduces review quality. The trend ostensibly started with
IEEE S&P adopting rolling deadlines in 2018 [55]. Interestingly,
IEEE S&P has since started to backtrack, scrapping revisions for its
2024 edition, due to a concern that papers were no longer being
immediately accepted, but instead (unnecessarily) put through a

2The collective of reviewers for one scientific conference is also known as the ‘program
committee’ or PC.
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revision process to cater to reviewer interests [57]. The top con-
ferences also start to give more attention to encouraging good
reviewing practices, including adding public meta-reviews, avoid-
ing re-reviewing by the same reviewers of a resubmitted paper [57]
or recognition through awards. Frachtenberg and Koster [46] sur-
veyed authors of papers at systems conferences, including top se-
curity venues. Among their findings, they conclude that authors
find review rebuttals and longer reviews very valuable. Sion [103]
discusses the shortcomings of the peer review process for computer
science conferences from his viewpoint as a PC chair, and proposes
to request reviewers to rate more papers more favorably to then in-
crease agreement on whether a paper should be accepted. Lee [71]
laments a “toxic culture of rejection” with computer science con-
ferences chasing low acceptance rates, with rejections of otherwise
high-quality papers on the basis of lack of novelty or obviousness
causing “detrimental effects” to the community.

The Internet measurement and computer networking commu-
nity has had a longer (academic) experience and experimentation
regarding the peer review process. In 2005, Feldmann reported on
her experience organizing a ‘shadow PC’ (also called ‘student PC’)
for SIGCOMM 2005 [42], a parallel PC of mostly junior researchers
that runs similarly to a real PC but does not actually decide on
the papers that are accepted to the conference. The goal is to give
novice researchers an opportunity to experience the review process
first hand. Among the findings, Feldmann discussed the differences
in paper decisions between the actual and shadow PC, observed a
more varied review depth and breadth for the shadow PC, and noted
that the experience was well received. The concept of a shadow PC
also made it to some editions of security conferences, e.g., USENIX
Security in 2014 and 2015, and IEEE S&P from 2016 to 2021. In
2008, Mogul and Anderson [76] summarized prior and future work
on best practices for organizing the conference review process.
Schulzrinne [101] opines that double-blind reviewing, where au-
thors are anonymous to reviewers, improves perceived fairness
but must be implemented judiciously to account for its unintended
side effects and limitations such as properly addressing submit-
ted papers that build upon prior publications. Beverly and Allman
introspectively measured the IMC 2010 review process [21], with
the goal of improving transparency and the process itself. They
focused in particular on whether review biases can be measured
empirically. The 2011 through 2013 editions of the IMC confer-
ence published (meta-)reviews openly, but a community survey
led to this practice being discontinued as there were no apparent
benefits [6]. Keshav [64] commented on the “spirit of harsh criti-
cism” that led to an attitude in measurement conferences and the
computer science field at large of finding reasons to reject rather
than accept a paper. Mogul [75] provided advice on how to reduce
‘hypercriticality’ and negativity in the reviewing process.

8 INCENTIVES
Rewarding research involves evaluating the quality, value, and im-
pact of research, and providing the right incentives and support for
research, including appropriate funding.

Rankings. Research is often compared by compiling rankings.
Based on the conference acceptance rate and community input,
several conference rankings are used as indicators for quality, both

specific to security and privacy venues [49, 121] and for all of com-
puter science [29, 63], with the ‘top-tier’ conferences being the most
attractive and easiest to identify [69]. There is a connection to the
peer review process, as the restrictiveness of selecting papers there
leads to a division of conferences into tiers of prestige and selectiv-
ity. For example, Ortloff et al. [80] commented that replication of
qualitative usable security and privacy studies is worthwhile for im-
proving insights, but that such papers may struggle to be accepted
to highly valued conferences, therefore disincentivizing researchers
from taking the risk of doing such “underappreciated” replication
work given a “publish or perish” culture. Publication counts at the
most reputable conferences are also used to compile rankings of re-
searchers (e.g., Balzarotti’s ‘System Security Circus’ [15]) and/or in-
stitutions (e.g., CSRankings [19]), next to survey-based approaches
for the latter [113]. Such rankings are not considered reliable or
useful by all, with criticism ranging from questionable methods
for survey-based rankings [20, 113] to biases towards established,
US-based, ‘traditional’ institutions and conferences [50]. More fun-
damentally, such rankings and the data they are based on may say
very little about actual quality or other aspects that are harder to
measure.

Citations. Next to assigning value to a research work based on
where it is published, citations by other papers are usually used to
quantitatively measure the subsequent impact of individual works
on the academic field. Rieck [93] maintains a list of highly cited
security papers, again only at ‘tier 1’ and ‘tier 2’ conferences. Fracht-
enberg [45] analyzed trends within citations of computer systems
papers, with security being one of the most cited subfields. Wendzel
et al. [116] measured potential factors influencing the citation count
of information security papers, using bibliometrics to draw con-
clusions that, a.o., papers with longer abstracts and more refer-
ences are cited more often, as well as journal papers, although they
also suggest this may be due to a higher number of low-tier con-
ferences with many papers with few citations skewing the data.
Vrhovec et al. [114] expanded this analysis, with a contrasting find-
ing that top conference papers are cited more often than journal
papers, and described how paper title lengths and references may
impact citation counts. While these findings may be statistically
validated, there is however no proposed theory that would clearly
explain these trends. Overall, the creators of these rankings and
counts are often quick to stress that they are merely informal met-
rics [15, 49, 93, 121] and “are insufficient to characterize all aspects
contributing to the relevance of scientific work” [93]. Citations,
venue reputation, and quality may also have little relation to each
other [34]. ‘Altmetrics’ are designed to measure research impact on-
line beyond only citations, comprising metrics such as read counts,
social media mentions, or media coverage [4]. However, these may
not (yet) be a viable alternative [30].

Good scientific practices. Particular attention also goes to incen-
tivizing good scientific practices beyond pure publications. For
example, for reproducibility, Collberg and Proebsting [28] proposed
additional research funding tied to enforceable ‘sharing contracts’ in
systems research. As another potential incentive, Zheng et al. [120]
found that security papers that create and share data sets are likely
to be cited more often. Frachtenberg [44] found that systems papers
with shared artifacts were cited around 75% more often than those
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without. On the front of evaluation and peer reviews, Crowcroft
et al. [31] proposed mechanisms to incentivize authors, reviewers,
and the community to submit higher-quality papers and reviews
as well as reward reviewing, and therefore improve the review pro-
cess. Longstaff et al. [73] found that the time pressure to publish
(‘breakthrough’) results reduces the quality of research experiments
and a worse application of a scientific approach. They suggested
funding agencies could incentivize security research work that is
more based in the scientific method.

9 DISCUSSION AND CONCLUSION
From our overview of cyber security meta-research work, we can
see that gradually more work is being published that critically ex-
amines cyber security research practices, with varying emphasis on
the different categories of meta-research. A strong focus is put on
improving methods, especially from an observation that significant
pitfalls can present themselves and may be prevalent due to a lack
of awareness or critical study. This has also led to the identification
of best practices for several domains of (cyber) security research.
We see a growing trend of critical analyses of state-of-the-art and
commonly used data collection tools or data sets, both identifying
flaws within them and iteratively proposing improvements. How-
ever, given a lack of a central repository for best practices or another
clear way to discover them, it may depend on researchers them-
selves to be aware of the latest developments, especially when prior
work still relies on outdated practices. Adoption of best practices
may therefore be slow. The enforcement of using such state-of-
the-art methods appears to become a task left for the peer review
process, where (individual) reviewers are expected to equally be
aware of current best practices and require that submitted work
applies them, which may not always be tenable. A collective, up-
to-date, and easily referenceable resource of best practices may
therefore be helpful to support researchers in selecting the most
appropriate methods and data sets for their study.

Compared to these methods, the other categories in our frame-
work are less commonly addressed in cyber security meta-research
literature, but in contrast are enforced or encouraged more strictly
or explicitly, providing more clarity as to what the research commu-
nity expects. We also see a noticeable evolution in this space, with
ongoing changes to various research processes. For example, ethical
considerations are rapidly gaining prominence and have become
a required element of cyber security research projects and papers.
Similarly, the introduction of artifact evaluation processes and their
encouragement through badging supports reproducibility. The peer
review process also evolves to incorporate revisions or increase
accountability through practices such as public reviews. These fit a
trend towards aspiring higher scientific rigor and objectivity, and
should therefore be welcomed, although these improvement ef-
forts are mostly applied to the processes around the publication of
research papers, and less the actual scientific content itself.

Improving the soundness and validity of research should be a
collective community effort, and there should be venues where the
processes and practices that form research can be discussed. For
example, in computer security, the Cyber Security Experimentation
and Test (CSET) and Learning from Authoritative Security Experi-
ment Results (LASER) workshops are of interest. Simultaneously,

the community can learn from the experiences of other research
communities, as was illustrated throughout with examples from the
Internet measurement community – observe for example how a top
Internet measurement conference stopped publishing meta-reviews
in 2013 due to an apparent lack of benefits, yet a top-tier security
conference introduced them ten years later. Introspectively, we find
that the framework initially proposed by Ioannidis et al. within the
biology community generalizes to and is reusable for analyzing
research practices within the cyber security community, further en-
couraging knowledge sharing across disciplines. However, we find
that the topics that populate the categories within the framework
are community-specific, with their own accents and prevalence, and
sufficient domain knowledge is therefore required to fully apply this
framework to the body of meta-research work within our commu-
nity. For example, we see that preregistration is nearly nonexistent
in our community, although it is gaining traction in other scientific
disciplines. Nevertheless, certain themes are more common to all
scientific fields, such as concerns on publication bias or the proper
incentivization of scientific research.

This iterative process of reflecting about the way in which cyber
security research is conducted, implementing improvements, and
evaluating how effective they are – i.e., applying the scientific
process to study our research –, can help to make cyber security
research become more reliable and trustworthy. By proxy, this
further contributes tomaking cyber security itself a (more) scientific
practice, and to helping ensure that the research done within the
field proves to be beneficial for improving the state of cyber security
and helping to protect against current and emerging threats.
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